اهلا وسهلا بك اخي الزائر وحتى تطلع وتتفاعل مع كامل المحتوى نرجو منك ان تسجل معنا


دروس ومقررات لجميع المستويات الدراسية بالعالم العربي
 
الرئيسيةالتسجيلدخول

شاطر | 
 

 حل معادلات الدرجة الثالثة - طريقة كاردانو ...

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
Admin


ذكر
عدد الرسائل : 225
العمر : 33
الدولة : المغرب
نقاط : 125
السٌّمعَة : 1
تاريخ التسجيل : 21/10/2008

مُساهمةموضوع: حل معادلات الدرجة الثالثة - طريقة كاردانو ...   الأربعاء نوفمبر 12, 2008 3:52 pm

حل معادلات الدرجة الثالثة - طريقة كاردانو

Cardano's Method

مقدمة تأريخية :

أول من حل معادلة الدرجة الثالثة على الشكل كان سبيونيه دل فرو Scipione del Ferro في أوائل القرن السادس عشر ، لكنه احتفظ بالحل سراً إلى حين وفاته حيث أفشاه إلى تلميذه أنطونيو فوير والذي بدوره احتفظ بالطريقة سراً .

عام 1530 ، استلم نيكولو فونتانا المعروف بـتارتاغليا (Tartaglia) معادلتين تكعبيتين من رياضي آخر وأعلن أنه استطاع حلهما . لم يصدقه أنطونيو فوير وتحداه علناً في مسابقة تضمنت أن يضع أحد طرفي المسابقة مبلغاً من المال ويطلب من الطرف الآخر أن يقوم بحل مسائل معينة خلال 30 يوماً . وإذا حل المسألة يحصل على النقود . كان مسألة فوير هي حل المعادلة والتي نجح تارتاغليا في حلها ، ولكن فوير فشل في حل مسألة غريمه والتي كانت وخسر المسابقة .

طلب كاردانو Cardano من تارتاغليا الحل ، والذي أفشاه له مشفراً في قصيدة بشرط أن لا يكشف عنه لأي كان . التزم كاردانو بالوعد إلى أن عرف بحل فرو الغير منشور فحصل على مخرج من وعده بالقول أنه ينشر عمل فرو لا حل تارتاجليا ، وقام بنشرها في كتابه Ars Magna واشتهرت الطريقة باسم كاردانو ، مع أنه من المفروض أن تسمى بطريقة فرو-تارتاجليا
لقد ساهمت هذه الطريقة بدعم موقف الرياضيين الذين تحدثوا عن الذي كانوا يواجه بتشكيك هائل ، ففي كتابه الجبر ، تحدث رافاييل بومبلي في 1572 عن المعادلة ، حيث أن حل لهذه المعادلة ، ولكن باستخدام الصيغة التي سنثبتها في نهاية الموضوع فإن الحل الناتج ، وقد أثبت بومبلي أن :

، مما أعطى الأعداد المركبة بعداً واقعياً أكثر .
طريقة الحل
المــعادلة العامة للدرجة الثالثة هي . .:

والتي يمكن اختزالها إلى المعادلة

بتعويض على الشكل () حيث يمكن إيجاد أن
نقوم الآن باستبدال آخر وهو ( x=u-v) ، وسنحصل على المعادلة :


والتي يمكن وضعها على الشكل التالي :

يمكننا أن نلاحظ أنه الطرف الأيسر يساوي الصفر إذا كان

و
من المعادلة الأولى يمكن أن نصل إلى أن

وبالتعويض في المعادلة الثانية نحصل على :

والتي يمكن وضعها على الصورة

المعادلة الأخيرة تمثل معادلة تربيعية في () ، والتي يمكن حلها بسهولة بقانون المعادلات التربيعية :

وبالتعويض ، نوجد v :

لذا :

ويمكن الحصول على الحلول الأخرى بالقسمة على ( ) .
ملاحظة : يمكن اختصار الطريقة ، بتعويض على الشكل :
بعد القسمة على ( ) والمزيد من العمليات الجبرية نحصل على الصيغة العامة للحلول لأي معادلة :

مميز المعادلة التكعيبية
بالنظر إلى المعادلات السابقة يمكننا تعريف المميز بالشكل :
إذا كان المميز موجباً فالمعادلة له حل حقيقي وحلان مركبان مترافقان
إذا كان المميز سالباً فلها ثلاثة حلول حقيقية مختلفة
إذا كان المميز صفراً ، فلها حل حقيقي ثلاثي ، أو حلان : أحدهما مكرر

أرجو أن يعجبكم الموضوع
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
 
حل معادلات الدرجة الثالثة - طريقة كاردانو ...
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
 :: المنتدى المغربي للتعليم :: المرحلة الثانوية-
انتقل الى: